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The Fluid of Primordial Fluctuations
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We formulate a phenomenological model where the inflaton fluctuations are
treated as a fluid. By applying the hydrodynamic equations to this fluid we
recover the conventional result that relates the spectrum of density fluctuations
in the inflaton field at reentering the horizon to the spectrum of fluctuations at
the time a scale leaves the horizon. Moreover, through the equivalent viscosity
of the fluid we obtain a Reynolds number that suggests turbulent motion, which
implies that mode±mode coupling in the inflaton field cannot be neglected. For
de Sitter inflation the resulting spectrum using turbulence theory is scale invariant
on all scales of interest. This suggests that the hypothesis of an extremely weakly
coupled inflation could be relaxed without affecting the predictions of the model.

1. INTRODUCTION

Inflationary models were originally introduced as a solution for the so-

called puzzles of standard hot big bang cosmology [1], namely the horizon,

flatness, and photon-to-baryon ratio problem [2, 3]. Soon after the original

proposal, it was realized that inflation could perform a subtler task: to provide

a framework for explaining the origin of primordial density fluctuations
[4]. Quantum fluctuations of the inflaton field distort the reheating surface,

inducing a primordial density contrast (see ref. 1; we shall review this argu-

ment in greater detail below) d r / r , (H/ f Ç ) d f , H being the inflationary

Hubble parameter. All quantities on the right-hand side of this relation are

evaluated as the relevant mode leaves the horizon. In order to obtain a concrete

prediction from this equation we must estimate the quantum fluctuations d f .
The usual approach treats these fluctuations as a free field (for example, in

the seminal paper by Starobinsky [5]) in its (de Sitter-invariant) vacuum state

or very close to it [6]. Then a simple calculation within quantum field theory

in curved spaces allows us to evaluate the d f as d f , H [7].
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The main goal of this paper is the application of hydrodynamics to

describe the macroscopic behavior of quantum fluctuations. This is possible

because these fluctuations, as far as they are relevant to our present concerns,
may be described by a c-number energy-momentum tensor subject both to

the usual conservation laws and the second law of thermodynamics [7]. There

is therefore an equivalent fluid description, consisting of a classical fluid

whose energy-momentum tensor and equation of state reproduce the observed

ones for the quantum fluctuations. Solving the dynamics of this equivalent

fluid yields answers to all relevant questions concerning the behavior of the
actual quantum fluctuations. As we shall show below, conditions in the early

stages of inflation are such that, for generic initial conditions, the flow is

highly turbulent, meaning that the corresponding Reynolds number is well

over 1000. This description will then as well enable us to develop ways of

estimating the primordial density contrast in chaotic inflation models without

presupposing that couplings among fluctuations are negligible, which will
be done by investigating the turbulent regime of the fluid.

The underlying physics in our model is the same as in these more

familiar approaches to primordial fluctuation generation: we do not question

the ultimate quantum origin of the fluctuations, but borrow insights from

hydrodynamics to describe the macroscopic behavior of these fluctuations,
rather than rely on possibly oversimplified linearized microscopic models.

The conditions of validity of our procedure are the assumptions that the

energy momentum tensor of fluctuations is a c-number quantity (which ought

to be true at any scale below Planck’ s) and the second law.

An immediate consequence of energy-momentum conservation and the

second law is that when velocities are low, the phenomenological fluid may
be described within the Eckart spacetime Navier±Stokes equation. The model

is then defined by giving the equation of state and the viscosity of the

equivalent fluid. The advantage we gain is that these are features that can

be computed locally. As far as the relevant scales are much below the curvature

radius, it is possible to use for them their standard flat-spacetime values. At

high temperatures we obtain the equation of state for radiation, p 5 (1/3) r ,
and a dynamic viscosity h , T 3. Since the speed of sound, being close to

the light speed, is much higher than the characteristic speed of the fluid, the

flow may be considered incompressible. There will be fluctuations in velocity,

nevertheless, and these are the ones responsible for density fluctuations, as

is well known [1].

Once the equivalent fluid description is set up, the task at hand to work
on the turbulent regime is to study the evolution of a typical eddy as it is

blown up by the universal expansion, exchanging and dissipating energy

while inside the horizon, and freezing when outside, until it reaches the

reheating hypersurface and delivers its energy to radiation. By assuming that



The Fluid of Primordial Fluctuations 1361

the turbulent velocity fluctuations in the eddy produce fluctuations in the

energy density of radiation in the usual way, we shall be able to relate

the primordial density contrast to the features of the original self-similar
turbulence. The resulting spectrum may be matched against the known data

on the cosmic microwave background [10], providing a crucial test of the

inner consistency and viability of the approach. Our conclusion is that, insofar

as the horizon remains constant during inflation, the spectrum of primordial

density fluctuations produced by self-similar flows is strictly scale invariant

(n 5 1; see ref. 11) at large scales. Quantitative agreement with observations
may be obtained without any special fine tuning.

The rest of the paper is organized as follows. In the next section we

provide a brief summary of hydrodynamics in expanding universes, in order

to set up the language for the rest of the paper. In Section 3 we proceed to

discuss the equivalent fluid description of inflaton fluctuations, and how to

extract the primordial density contrast therefrom. As a simple application of
the method, we consider briefly the case of free fluctuations, showing that

the model leads back to the conventional results. In Section 4 we present

Chandrasekhar ’ s self-similar solutions and their generalization to expanding

universes, deriving the corresponding scale-invariant primordial contrast. We

state our main conclusions in the final section.

2. HYDRODYNAMIC FLOWS IN EXPANDING UNIVERSES

For a curved spacetime, in particular that described by a Friedmann±

Robertson±Walker (FRW) background metric with zero spatial curvature

[ds2 5 2 dt2 1 a2(t)(dx2 1 dy2 1 dz2)], the generalization of the hydrodynamic

equations has been considered by many authors [12±16]. We follow Tomita

et al.’ s analysis [17], in which they obtain the solution for the energy spectrum

in the case of homogeneous, isotropic, and incompressible turbulence.
In a generic spacetime, we describe fluid flow from the energy density

r , pressure p, and four-velocity U. The symmetries of the FRW solution

suggest using instead the commoving three-velocity ui 5 U i/U 0; if U i ¿ U 0

the flow is nonrelativistic, and if ¹ u 5 0, it is incompressible [u 5 (u1, u2,

u3)]. Later we shall also use the physical three-velocity v 5 a(t)u.
The corresponding continuity and Navier±Stokes equations for a

Robertson±Walker background are obtained by the condition of conservation

of the energy-momentum tensor [8].

To analyze the system’ s behavior, we define the two-point, one-time

correlation function for the velocity:

Rij(x, x8, t) 5 a2 ^ ui (x, t)uj (x8, t) & (1)



1362 GranÄ a

Let us also define the following correlation tensors:

Pij(r, t) 5
1

( p 1 r ) 1 -
- ri

^ p(x, t)uj (x8, t) & 2
-
- rj

^ p(x8, t)ui (x, t) & 2 (2)

and

Tij(r, t) 5 a2 -
- rk

^ ui (x, t)uk(x, t)uj (x8, t) 2 ui (x, t)uk(x8, t)uj (x8, t) & (3)

If we call F ij the Fourier transform Ð done in terms of comoving wave-
numbersÐ of R ij, and G ij those corresponding to Tij, we obtain the equation

for the energy spectrum for a fluid with shear viscosity h 5 n ( p 1 r ) and

zero bulk viscosity, namely

2
-
- t

E(k, t) 5 T(k, t) 1 2 H n k2

a2 1
- ln(( p 1 r )a4)

- t J E(k, t) (4)

where

E(k, t) 5
1

2 # F ii(k, t)k2 d V (k); T(k, t) 5 2
1

2 # G ii(k, t)k2 d V (k)(5)

The inertia term T(k, t) is the one that contains the mode±mode interac-

tion, and its effect is to drain energy from the more energetic modesÐ typically

the bigger onesÐ to the ones where there is major viscous dissipationÐ the

smaller ones.

3. EQUIVALENT FLUID FOR INFLATON FLUCTUATIONS

After establishing the basic necessary notions for the description of

hydrodynamic flows, our goal is to associate an equivalent fluid description

to inflaton fluctuations, and to derive the spectrum of primordial density

fluctuations at reheating therefrom. We shall discuss in the following sections
some nontrivial instances of this method.

3.1. The Inflaton as a Fluid

To describe the inflaton field from the point of view of an equivalent

fluid, we need to obtain the energy density, pressure, and velocity of this

fluid as functionals of the state of the field. To this end, our starting point

will be that in the rest frame of the fluid (quantities in this frame being

labeled by a curl), the field ought to be spatially constant

¹ Ä f 5 0 (6)
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To obtain the fluid four-velocity, we make a boost to the comoving

frame. Then, the boost’ s characteristic velocity will be the one we are seeking.

By the condition (6) we obtain

ui 5 2
- i f
f Ç

(7)

which is generalized to the covariant form

u m 5 2
- m f

! 2 - r f - r f
(8)

The energy density in the rest frame must be

r Ä 5
1

2 1 - f
- t 2 2 1 V( f )

Using the Lorentz transformations with the four-velocity (8), we obtain the
general form for the energy density

r 5 2
1

2
- r f - r f 1 V( f ) (9)

Finally, we obtain the pressure imposing an equality between the energy-

momentum tensor for a perfect fluid (see, for example, ref. 8) and that for
a minimally coupled scalar field (see ref. 7). The resulting pressure is

p 5 2
1

2
- r f - r f 2 V( f ) (10)

Since the possibility of deriving a Navier±Stokes equation for the equivalent

fluid rests on the conservation of T m n , in principle only the whole inflaton
field can be thus represented. However, under the approximation that the

homogeneous part of the inflaton essentially contributes an effective cosmo-

logical constant, the background energy-momentum tensor T0 m n 5 L g m n is

independently conserved (even if L were not constant, conservation fails

only on scales too large to be cosmologically relevant), and we can associate
an equivalent fluid to the inhomogeneous quantum fluctuations d f alone.

For this fluid, we find the physical velocity (vi 5 aui 5 a 2 1ui)

vi
k 5 ki

phys 1 d f k

f Ç 0 2 (11)

where f 0 is the homogeneous background. We interpret this equation to

mean that stochastic averages of the fluid velocity are to be identified with

(symmetric) quantum expectation values of the operator on the right-hand
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side [18, 19]. As far as the equation of state is concerned, the free energy

for a massive scalar field in the high-temperature limit (T À m) [20] gives

us the relationship between the pressure and the energy density, which turns
out to be that for radiation, p 5 (1/3) r . This means that the energy density

for this fluid redshifts proportional to a 2 4. As this result has been obtained

for a flat space time, it is valid for scales smaller than the curvature radius.

When scales are bigger than the Hubble radius, which takes place when the

high-temperature limit is no longer valid, the velocity ui [Eq. (7)] must remain

constant, which in turn means that the physical three-velocity vi 5 avi must
redshift proportional to a 2 1. As these scales are frozen out because they are

outside the horizon, they cannot interact among them or be dissipated by

viscosity. Thus, the Navier±Stokes equation for a Robertson±Walker back-

ground reduces to

- v

- t
1

- ln(( p 1 r )a4)

- t
v 5 0 (12)

We obtain v } a 2 1 when ( p 1 r ) } a 2 3, corresponding to the equation of

state of matter: p 5 0. Thus, when the scales are well outside the horizon,
our fluid behaves as pressureless dust, in agreement with the well-known

prediction based on the virial theorem for the equation of state of a field

undergoing oscillations [21], which occurs at the final period of inflation.

We must point out that the hypothesis of incompressibility is no longer valid

for an equation of state of this type. Nevertheless, for scales bigger than the

Hubble radius, which cannot decay through nonlinear interaction or dissipa-
tion by viscosity, Eq. (12) is still valid, regardless of the ratio of typical

velocities to the speed of sound.

3.2. Transport Coefficients

The framework to obtain transport coefficients for our fluid is linear

response theory. In the limit of slow variations in space and time of the
magnitudes involved in the equation of conservation for the energy-momen-

tum tensor, the system’ s response while it is slightly displaced from equilib-

rium can be alternatively described by Navier±Stokes and continuity

equations as well as by equilibrium expectation values of correlation func-

tions. Matching these two descriptions, one obtains the Kubo formula for the

shear viscosity [22]:

h 5
1

6
lim

w,k ® 0 F 1

w # dt # d 3r ei(k ? r 2 wt) ^ [ p ij(r,t), p ij(O, 0)] & eq G (13)

where p ij are the traceless spatial±spatial components of the energy-momen-

tum tensor:
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p ij 5 Tij 2
1

3
d ijT

k
k

For a minimally coupled scalar field the shear viscosity in the high-tempera-

ture limit (T À m, G ) turns out to be

h 5 const ? T G 2 (14)

The thermal width G comes from the imaginary part of the self-energy. From

dimensional analysis, it must be proportional to the temperature since the
only relevant scale in the high-temperature limit is the temperature itself (the

constant of proportionality must be much less than unity for the consistency

of the high-temperature limit). Assuming that the only present interaction is

the one coming from a s f 4 term, G must include two s insertions, which

means that G must be proportional to s 2 (we will estimate it as G , s 2T ).

The shear dynamic viscosity becomes

h , s 4T 3 (15)

A similar analysis allows us to evaluate the bulk viscosity, which turns

out to be zero for a fluid with an equation of state of the type p 5 (1/3) r
[23], in agreement with our previous assumptions.

3.3. Conversion of Hydrodynamic Fluctuations into Primordial
Density Contrast

Having described the quantum field as a fluid, we will analyze the

resulting spectrum of density inhomogeneities. To do so, we assume that at

some time t1 during the beginning of the inflationary phase, when all the

scales relevant to cosmology were inside the horizon, the scalar field fluctua-
tions were undergoing hydrodynamic fluctuations. Once the scales leave the

Hubble radius, their energy cannot be dissipated by viscosity or by nonlinear

coupling. Thus, Eq. (4) means that they evolve according to

E(k, t . tout) 5 E(k, t 5 tout) F (( p 1 r )a4)out

(( p 1 r )a4)(t) G 2

(16)

where the subscript ª outº refers to the time when each scale leaves the horizon.

The definition of E(k), Eq. (5), can be written in terms of the Fourier

transform of the velocity; since the flow is statistically isotropic and

homogeneous,

^ vi(k)vi(k8) & 5 1 E(k)

4 p k2 2 d 3(k 1 k8) (17)
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Combining (16) and (17), we can obtain the r.m.s. value for the scalar

field velocity at the time of reheating, which will be the r.m.s. value of the

perturbation in the radiation’ s streaming velocity. This perturbation will in
turn produce fluctuations in the energy density of radiation, which will evolve

in the usual way. The theory of relativistic very large wavelength fluctuations

predicts d , a2, where d 5 d r / r is the density contrast, and thus d Ç , H d ,

while the continuity equation yields d Ç , v/l on a scale of physical size l.
Consistency of these two pictures leads to the relationship between the veloc-

ity at the time of reheating and the fluctuation in the energy density as

d r
r Z reh

5
vreh

lHreh

(18)

where Hreh is the Hubble parameter at reheating. Following these fluctuations

up to the time they reenter the Hubble radius, assuming that their size is

such that they are always unstable (they must be always bigger than the Jeans
length), they grow following the law (see, for example, refs. 1 and 8)

d [
d r
r Z ent

5
d r
r Z reh 1 aeq

areh 2
2

1 aent

aeq 2 [ H 2
rehl

2 d r
r Z reh

(19)

where the subscript ª entº means the time each scale reenters the Hubble

radius (the second equation holds even if the entering time occurs before
matter±radiation equality). Combining equations (18)±(19), we obtain the

density contrast predicted by this theory at the time the modes reenter the

Hubble radius:

^ d k d k8 & ent 5
H 2

reha
2
reh E(k, t 5 treh)

4 p k4 d 3(k 1 k8) (20)

This is the main result of this paper, as it relates the density contrast to a

hydrodynamic variable. We shall see a nontrivial application of this formula

in the next section, but first it is convenient that we pause to show explicitly

how the familiar results relating to free field fluctuations are recovered in
this language. Probably the most important feature of a theory where inflaton

fluctuations are free is that each mode evolves independently of the others.

Immediately after leaving the horizon they freeze, a situation that can be

described phenomenologically by assigning to the mode the effective equation

of state of dust. This implies that

E(k, t 5 treh) 5 E(k, t 5 tout) 1 a(t 5 tout)

a(treh) 2
2

(21)

^ d k d k8 & ent 5
E(k, t 5 tout(k))

4 p k2 d 3(k 1 k8) (22)
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Let us compare this expression to the usual one in terms of quantum fluctua-

tions. First we use Eq. (17), neglecting any variation of H or of the velocities

during reheating, to get

^ d k d k8 & ent 5 ^ vi(k)vi(k)8) & | t 5 tout(k) (23)

We now relate the physical velocity to field fluctuations according to Eq.
(11); at t 5 tout(k), kphys 5 H, and this reduces to

^ d k d k8 & ent 5 1 H

f Ç 2
2

^ d f k d f k8 & | t 5 tout(k) (24)

which is the conventional result [24].

This shows the agreement between the fluid description and the conven-

tional approach in this case.

4. SELF-SIMILAR FLOWS AND NONLINEAR FLUCTUATIONS

In the previous sections we set up the general formalism whereby we
can associate to the evolution of quantum fluctuations during inflation an

equivalent fluid description, and derive the corresponding primordial density

contrast from hydrodynamic variables. Of course, to put the formalism to

actual use, we must be able to solve Navier±Stokes equations, which is in

itself almost as daunting as solving the fundamental quantum field theory.

However, there is in the hydrodynami c case a century of lore to draw upon
[25], and some well-tested approximations leading to relatively simple solu-

tions. In this section, we shall demonstrate the equivalent fluid method by

investigating the spectra resulting from one of these solutions, namely self-

similar flows. Toward the end of the section, we shall discuss the relevance

of these solutions to actual cosmology.

As we have seen in the previous section, Eq. (20), the key element in
deriving the primordial density contrast is the energy spectrum E(k), Eq. (5),

which is the solution of the balance equation (4). By providing closure, that

is, writing the inertial force in terms of the spectrum itself, which was

done by Heisenberg [26], a closed evolution equation for E(k) is obtained.

Chandrasekhar [27] solved this equation for decaying turbulence, assuming

that there is a stage in the decay where the bigger eddies have a sufficient
amount of energy to maintain an equilibrium distribution, thus requiring that

the solution for the spectrum should be self-similar. These solutions were

generalized to flows in expanding universes by Tomita et al. [17], obtaining

a linear spectrum for scales much bigger than the Taylor microscale l :
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E(k, t) 5 4v2
ti 1 ( p 1 r )ia

4
i

( p 1 r )a4 2
2

l 2
i k for l k ¿ 1 (25)

where the Taylor microscale l and the turbulent velocity vt are defined by

l 2(t) [ 5
# E(k, t) dk

# E(k, t)k2 dk

,
1

2
v2

t (t) [ # E(k, t) dk (26)

and they must follow the law

l 2(t) 5 l 2
i 1 10 #

t

ti

h
( p 1 r )a2 dt, vt 5 vti 1 ( p 1 r )i a

4
i

( p 1 r )a4 2 l i

l (t)
(27)

We now want to place a self-similar solution in the context of an

inflationary scenario where, instead of regarding the inflaton fluctuations as

free, we shall replace them by an equivalent fluid, whose evolution we will

assume to be self-similar.

We will assume a duration of inflation close to the minimum value

(Nmin . 60, where N stands for the number of e-folds), which can be justified
by the expected quadrupole anisotropy [28] as well as by the ratio of the

present to the critical density. By this assumption, a scale whose present size

equals the horizon ( . 3000 Mpc) leaves the Hubble radius soon after the

beginning of inflation.

Unless we are in the free field case, here we cannot deal with each mode

independently, but we must treat the whole flow subject to a phenomenological
equation of state. Let us assume the self-similar flow sets in at a time t1
when the temperature T À H, and that the present horizon scale leaves the

horizon at or around time t1. Then it is valid to use the high-temperature

limit for length scales close to the present horizon while they leave the Hubble

radius during the inflationary phase. The fluid’ s equation of state in this limit

is of the p 5 1±3 r type, which means that the product ( p 1 r )a4 remains

constant throughout the universal expansion. The factor (( p 1 r )a4)out

involved in (16) is then independent of the particular scale being considered

within this group. Thus, using (16) and (25) we can obtain the energy spectrum

for these scales while they are outside the horizon:

E(k, t . tout(k))

E(k0, t . tout(k0))
5

E(k, t 5 tout(k))

E(k0, t 5 tout(k0))
(28)
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where [cf. (25)]

E(k, t 5 tout) 5 4v2
t (t1) l 2(t1)k (29)

l (t1) is the comoving Taylor microscale at the time the self similar flow sets

in. As at the initial time t1 the only relevant scale is the temperature, we
expect the initial Taylor microscale to be the inverse of the temperature at

that time, i.e., l phys(t1) , 1/T(t1). For a viscosity given by (15), using (27)±(29),

the resulting spectrum for the scales at the time of reentering the Hubble

radius turns out to be

^ d k d k8 & ent 5
v2

t (t1)

p
1

k3 d 3(k 1 k8) (30)

that is, a scale-invariant Harrison±Zel`dovich spectrum [29] with amplitude
vt. The constraint of k ¿ l 2 1 reduces to a minimum scale above which we

obtain scale invariance. Nevertheless, the Jeans length imposes a lower limit

bigger than this (we are assuming that the scales are always unstable while

they are outside the horizon, which is valid if they are bigger than the

Jeans length).
Finally, combining the estimates for the initial Taylor microscale and

the turbulent velocity, we obtain a Reynolds number:

R 5
4

3

l phys(t1)vt(t1) r (t1)

h (t1)
, vt(t1)

s 4

suggesting highly turbulent motion, especially for small couplings.

5. FINAL REMARKS

In this paper we developed an alternative hydrodynamic description for

fluctuations in the inflaton field.

In present conventional approaches, density inhomogenei ties arise from

primordial fluctuations in the inflaton field, ultimately of quantum origin.
Fluctuations are treated as a free field, thus forcing upon us the assumption

that higher derivatives of the inflaton potential are negligible. Through the

equivalent fluid description we sought a direct estimate of the primordial

density contrast generated in a nonlinear inflationary model. Our model

successfully reproduces the results of the conventional approach on very

large scales, that is, a scale-invariant spectrum.
In our view, one result of our work is not that a self-similar solution

should be our final description of fluctuations during inflation, but rather

that it is possible to make sense of the physics of fluctuations even in rather

general potentials. The self-similar solutions we have explored in some detail
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should be seen as an ideal case which will more or less approximate actual

flow patterns; indeed, the same could be said of the de Sitter-invariant vacuum

as a description of the actual state of the field in free theories.
The connection of the physics of primordial fluctuations to hydrodynam-

ics has some interest of its own, as it provides an alternative to brute-force

quantum field-theoretic calculations, and also yields physical insight into the

macroscopic behavior of quantum fields in the early universe. The equivalent

fluid method opens up a wealth of new interesting phenomena, such as

intermittency in the primordial spectrum [30, 31] and Burgers turbulence
[32], with a strong potential impact on our understanding of the evolution

of cosmic structures. Moreover, it is appealing to be able to account for a

macroscopic phenomenon, such as fluctuation generation on super horizon

scales, mostly on macroscopic terms (for an independent attempt in this

direction, see ref. 33). We will continue our research in this field, which

promises a most rewarding dialogue between cosmology, astrophysics, and
nonlinear physics at large.
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